进程和线程的上下文切换
进程
进程的状态
我们一般把进程大致分为 5 种状态:
- 创建状态(new) :进程正在被创建,尚未到就绪状态。
- 就绪状态(ready): 进程已处于准备运行状态,即进程获得了除了处理器之外的一切所需资源,一旦得到处理器资源(处理器分配的时间片)即可运行。
- 运行状态(running): 进程正在处理器上运行(单核 CPU 下任意时刻只有一个进程处于运行状态)。
- 阻塞状态(waiting): 又称为等待状态,进程正在等待某一事件而暂停运行如等待某资源为可用或等待 IO 操作完成。即使处理器空闲,该进程也不能运行。
- 结束状态(terminated): 进程正在从系统中消失。可能是进程正常结束或其他原因中断退出运行。
另外,还有一个状态叫挂起状态,它表示进程没有占有内存空间。这跟阻塞状态是不一样,阻塞状态是等待某个事件的返回。
由于虚拟内存管理原因,进程的所使用的空间可能并没有映射到物理内存,而是在硬盘上,这时进程就会出现挂起状态。
挂起状态可以分为两种:
- 阻塞挂起状态:进程在外存(硬盘)并等待某个事件的出现;
- 就绪挂起状态:进程在外存(硬盘),但只要进入内存,即刻立刻运行;
进程的控制结构PCB
PCB 是进程存在的唯一标识,它包含了以下信息:
- 进程描述信息:
- 进程标识符:标识各个进程,每个进程都有一个并且唯一的标识符;
- 用户标识符:进程归属的用户,用户标识符主要为共享和保护服务;
- 进程控制和管理信息:
- 进程当前状态,如 new、ready、running、waiting 或 blocked 等;
- 进程优先级:进程抢占 CPU 时的优先级;
-
资源分配清单:虚拟地址空间/虚拟内存的信息,所打开文件的列表和所使用的 I/O 设备信息。
- CPU 相关信息:CPU 中各个寄存器和程序计数器的值,当进程被切换时,CPU 的上下文信息都会被保存在相应的 PCB 中,以便进程重新执行时,能从断点处继续执行。
PCB的组织方式:通常是通过链表的方式进行组织,把具有相同状态的进程链在一起,组成各种队列。
进程的上下文切换
各个进程之间是共享 CPU 资源的,在不同的时候进程之间需要切换,让不同的进程可以在 CPU 执行,那么这个一个进程切换到另一个进程运行,称为进程的上下文切换。
⭐️进程的上下文主要包括虚拟内存、打开的文件、使用的I/O设备等用户地址空间的资源,进程描述符、内核堆栈等控制信息和CPU上下文(寄存器和程序计数器)。
进程是由内核管理和调度的,所以进程的切换只能发生在内核态。
通常,会把交换的信息保存在进程的 PCB,当要运行另外一个进程的时候,我们需要从这个进程的 PCB 取出上下文,然后恢复到 CPU 中,这使得这个进程可以继续执行,如下图所示:
发生进程上下文切换有哪些场景:
- 进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行;
- 进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行;
- 当进程通过 sleep() 这样的方法将自己主动挂起时,自然也会重新调度;
- 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行;
- 发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序;
线程
进程和线程的比较
线程与进程的比较如下:
- 进程是资源(包括内存、打开的文件等)分配的单位,线程是 CPU 调度的单位;
- 进程拥有一个完整的资源平台,而线程只独享必不可少的资源,如寄存器和栈;
- 线程能减少并发执行的时间和空间开销;
对于,线程相比进程能减少开销,体现在:
- 线程的创建时间比进程快,因为进程在创建的过程中,还需要资源管理信息,比如内存管理信息、文件管理信息,而线程在创建的过程中,不会涉及这些资源管理信息,而是共享它们;
- 线程的终止时间比进程快,因为线程释放的资源相比进程少很多;
- 同一个进程内的线程切换比进程切换快,因为线程具有相同的地址空间(虚拟内存共享),这意味着同一个进程的线程都具有同一个页表,那么在切换的时候不需要切换页表。而对于进程之间的切换,切换的时候要把页表给切换掉,而页表的切换过程开销是比较大的;
- 由于同一进程的各线程间共享内存和文件资源,那么在线程之间数据传递的时候,就不需要经过内核了,这就使得线程之间的数据交互效率更高了;
所以,线程比进程不管是时间效率,还是空间效率都要高。
为什么线程切换开销比较少
- 首先是在创建和销毁的时候,线程释放的资源比进程要少很多,比如进程还需要涉及到内存管理信息、文件管理等等。另外同一个进程内的线程的上下文切换也比进程快,因为他们具有相同的地址空间,因此切换的时候就不需要切换页表。还有就是线程之间共享内存和文件资源,因此在线程间数据传递的时候就不需要经过内核了。
线程的上下文切换
线程上下文切换得看线程是不是属于同一个进程:
- 当两个线程不是属于同一个进程,则切换的过程就跟进程上下文切换一样;
- 当两个线程是属于同一个进程,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换程序计数器、寄存器等CPU上下文和线程栈即可。
一般TCB中的内容较少,因为有关资源分配等多数信息已经记录于所属进程的PCB中。TCB中的主要信息包括线程标识、线程状态、调度参数、现场、链接指针,其中现场信息主要包括通用寄存器、程序计数器以及用户栈指针。
调度
为了确定首先执行哪个进程以及最后执行哪个进程以实现最大 CPU 利用率,计算机科学家已经定义了一些算法,它们是:
- 先到先服务(FCFS)调度算法: 从就绪队列中选择一个最先进入该队列的进程为之分配资源,使它立即执行并一直执行到完成或发生某事件而被阻塞放弃占用 CPU 时再重新调度。
- 短作业优先(SJF)的调度算法: 从就绪队列中选出一个估计运行时间最短的进程为之分配资源,使它立即执行并一直执行到完成或发生某事件而被阻塞放弃占用 CPU 时再重新调度。
- 高响应比优先调度算法:主要是权衡了短作业和长作业。每次进行进程调度时,先计算「响应比优先级」,然后把「响应比优先级」最高的进程投入运行。(等待时间+要求服务时间)/ 要求服务时间
- 时间片轮转调度算法: 时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法,又称 RR(Round robin)调度。每个进程被分配一个时间段,称作它的时间片,即该进程允许运行的时间。
- 最高优先级调度: 为每个流程分配优先级,首先执行具有最高优先级的进程,依此类推。具有相同优先级的进程以 FCFS 方式执行。可以根据内存要求,时间要求或任何其他资源要求来确定优先级。
- 多级反馈队列调度算法:多级反馈队列调度算法既能使高优先级的作业得到响应又能使短作业(进程)迅速完成,因而它是目前被公认的一种较好的进程调度算法,UNIX 操作系统采取的便是这种调度算法。
- 设置了多个队列,赋予每个队列不同的优先级,每个队列优先级从高到低,同时优先级越高时间片越短;
- 新的进程会被放入到第一级队列的末尾,按先来先服务的原则排队等待被调度,如果在第一级队列规定的时间片没运行完成,则将其转入到第二级队列的末尾,以此类推,直至完成;
- 当较高优先级的队列为空,才调度较低优先级的队列中的进程运行。表示如果有新的进程加入优先级高的队列时,立刻停止当前正在运行的进程,转而去运行优先级高的队列;
既已览卷至此,何不品评一二: